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Abstract— Recent few years social networking sites are facing 
a problem of various attacks on their network which contains 
sensitive data. Usually social networks will publish their social 
network data for research purpose. Researchers and social 
network analysts can make use of these data to do research 
for decision making and market analysis. Before releasing the 
data for research, the social network site removes the 
identifiable parameters such as name, location, type of 
relationship, etc. Simply removing all identifiable personal 
information before releasing the data is insufficient. It is easy 
for an adversary to identify the target by performing different 
structural queries. Many of the previous studies were 
concentrated only on the anonymization part. We identify a 
special type of attack called structural attack. With the aim of 
resisting various structural attacks, in this paper, we proposed 
a new and efficient framework called k-Autorestructure 
which to protect against multiple structural attacks. There is 
no doubt in that our proposed algorithm will resist any kind 
of structural attack again the social network data. 
 
Keywords— Node Info, Link Info, Naively-Anonymized 
networks, Structural similarity, Auto restructure.  
 
 

I. INTRODUCTION 
A network data set released from social network is a graph 
consists of a set of nodes and the edges between the nodes. 
Network data can be varied with different application areas. 
For e.g. a social network describes individuals and their 
personal relationships with other in the same network. 
Another example is an information network. An 
information network might describe a set of articles 
connected by citations. As the network graph is provided 
with different perspectives of information, networks can be 
analyzed in many ways: to study disease transmission, to 
measure the influence of a publication, and to evaluate the 
network’s resiliency to faults and attacks. Such the studies 
reveal our understanding of network structure and function.  
 
However, many networks contain highly sensitive data. For 
example, Facebook published a social network data which 
shows a set of individuals related by their relationships and 
private groups. The sensitivity of the data often prevents 
the data owner from publishing it. Network graph 
researchers analyze the graph for graph strength, nodes and 
types of groups. These traces represent a social network 
where the entities are internet hosts and the existence of 
communication between hosts constitutes a relationship. 
However network traces sensitive information because it is 
often possible to associate individuals with the hosts they 

use, and because traces contain information about web sites 
visited, and time stamps which indicate periods of activity. 
The challenges in protecting network trace data are being 
actively addressed by the research community. 
 
The objective of the data owner is to publish the data in 
such a way that permits useful analysis yet avoids 
disclosing sensitive information. Because network analysis 
can be performed in the absence of entity identifiers, the 
data owner first replaces identifying attributes with 
synthetic identifiers. We refer to this procedure as naive 
anonymization. It is a common practice in many domains, 
and it is often implemented by simply encrypting 
identifiers. Presumably, it protects sensitive information 
because it breaks the association between the sensitive data 
and real-world individuals. Before publishing all these data 
for analysis, data mining, and other purposes, it is 
necessary to ensure that the published data will not contain 
any private information. 
 
Most existing work on privacy in data publishing has 
focused on tabular data, where each record represents a 
separate entity, and an individual may be re-identified by 
matching the individual’s publicly known attributes with 
the attributes of the anonymized table. Anonymization 
techniques for tabular data do not apply to networked data 
because they fail to account for the interconnectedness of 
the entities. It is not well-understood how publishing a 
network threatens privacy; initial investigations, including 
anonymization algorithms, are just emerging. Formally, we 
model a network as an undirected graph G=(V,E). The 
naive anonymization of G is an isomorphic graph,             
Ga = (Va, Ea), defined by a random bijection function        
f: V→Va. 
 
Figure 1 shows a small network along with its naive 
anonymization. The anonymization mapping f, is a random, 
secret mapping. Naive anonymization prevents re-
identification when the adversary has no information about 
individuals in the original graph. To assess the risk of re 
identification, we assume each element of the candidate set 
is equally likely and use the size of the candidate set as a 
measure of resistance to re-identification. Since f is 
random, in the absence of other information, any node in Ga 
could correspond to the target node x. Thus, given an 
uninformed adversary, each individual has the same risk of 
re-identification. 
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Gnanam 3 
Kesaven 1 
Jayanthi 5 

Anbu 4 
Munusamy 6 

Priya 2 
(c) 

 
Figure 1: (a) Social Network (G), (b)Naïve Anonymized 
Network(G’),(c)Mapping function (f) 
 
However, in practice the adversary may have access to 
external information about the entities in the graph and 
their relationships. This information may be available 
through a public source beyond the control of the data 
owner, or may be obtained by the adversary’s malicious 
actions. For example, for the graph in Figure 1, the 
adversary might know that “Munusamy has three or more 
neighbors,” or that “Gnanam is connected to at least two 
nodes, each with degree 2.” Such information allows the 
adversary to reduce the set of candidates in the anonymized 
graph for each of the targeted individuals. Although an 
adversary may also have information about the attributes of 
nodes, the focus of this paper is structural re-identification, 
where the adversary’s information is about graph structure. 
Re-identification with attribute knowledge has been well-
studied, as have techniques for resisting it. More 
importantly, many network analyses are concerned 
exclusively with structural properties of the graph; 
therefore safely publishing an unlabeled network is a 
legitimate goal.  
This above example shows that a naive privacy preserving 
published network is still susceptible to these structural 
attacks. However, these suffer from the following 
limitations.  
 

1) The previously research papers tried about only on 
anonymization and only on any single type of attack. 
Probably an adversary may use any type of attack and 
we are not sure about his technique of attack on 
structure. Also it is not sure that an adversary will use 
only one type of attack. So, the researches has to tackle 
simultaneous multiple attacks. 

 2) Since the released network only contains a summary of 
structural information about the original network, users 
have to generate some random sample instances of the 
released network for further analysis. Introducing 
uncertainty in the released network can enable 
handling of structural attack. This is the only main 
solution to handle multiple attacks. By introducing 
uncertainty it makes an adversary to analyze the 
network structure.  

3) Existing methods do not consider dynamic releases. This 
is important in evolutionary networks and dynamic 
social network analysis. For example, given a series of 
online trading networks, such as eBay, based on 
community evolution in these networks, we can predict 
the trend of consumers’ purchasing behavior. These 
applications require republishing data periodically to 
support dynamic analysis. However, all existing 
privacy-preserving network publication methods 
consider only “one-time” release. Even though each 
released network Gt

* at time Tt can guarantee privacy 
individually, an adversary can still identify the target 
with a high probability by collecting the information 
from multiple releases.  

 
II. RELATED WORK 

Before formally describing adversary we consider the 
practical properties of adversary knowledge that motivate 
our definitions. We also explain how structural similarity in 
a graph can protect against structural attack. 
 
2.1 Knowledge Acquisition in Practice 
Accurately modeling adversary knowledge is a key for 
understanding the vulnerabilities of naively-anonymized 
networks, and for developing new anonymization 
strategies. External information about a published social 
network may be acquired through malicious actions by the 
adversary or from public information sources. In addition, a 
participant in the network, with some innate knowledge of 
entities and their relationships, may be acting as an 
adversary in an attempt to uncover unknown information. 
A legitimate privacy objective in some settings is to publish 
a network in which participating individuals cannot re-
identify themselves.  
Our goal is to develop parameterized and conservative 
models of external information that capture the power of a 
range of adversaries, and to then study the threats to 
anonymity that result. One of our guiding principles is that 
adversary knowledge about a targeted individual tends to 
be local to the targeted node, with more powerful 
adversaries capable of exploring the neighborhood around a 
node with increasing diameter. For the participant-
adversary, whose knowledge is based on their participation 
in the network, existing research about institutional 
communication networks suggests that there is a horizon of 
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awareness of about distance two around most individuals. 
We formalize the external information available to an 
adversary through a set of knowledge queries described in 
the next section. Each knowledge query is parameterized 
by the radius around the targeted individual which it 
describes.  
We also consider the impact of hubs, which are connected 
nodes observed in many networked data sets. In a Web 
graph, a hub may be a highly visited website. In a graph of 
email connections, hubs often represent influential 
individuals. Because hubs are often outliers in a graph’s 
degree distribution, the true identity of hub nodes is often 
apparent in a naively-anonymized graph. In addition, an 
individual’s connections to hubs may be publicly known or 
easily deduced. We consider attackers who use hub 
connections as a structural fingerprint to re-identify nodes.  
Our assumption throughout the present work is that 
external information sources are accurate, but not 
necessarily complete. Accuracy means that when an 
adversary learns facts about a named individual, those facts 
are true of the original graph. However, we distinguish 
between a closed-world adversary, in which absent facts 
are false, and an open-world adversary in which absent 
facts are simply unknown. For example, when a closed-
world adversary learns that Munusamy has three neighbors, 
he also learns that Munusamy has no more than three 
neighbors. An open-world adversary would learn only that 
Munusamy has at least three neighbors. Hub fingerprints 
have an analogous open- and closed-world interpretation.  
In practice, an adversary may acquire knowledge that is 
complete. For example, an attacker who acquires the 
address book for a targeted individual would learn a 
complete list of their neighbors in an email communication 
network.  
As we would expect, closed-world adversaries are 
significantly more powerful.  However, in many settings, 
the adversary cannot be certain that their information is 
complete and must assume an open world. We believe both 
closed- and open-world variants of adversary knowledge 
are important. 
 
2.2 Anonymity through Structural Similarity 
Naturally, nodes that seem structurally similar may be 
impossible to differentiate to an adversary, in spite of 
external information. A strong form of structural similarity 
between nodes is automorphic equivalence. Two nodes x, y 
are automorphically equivalent if there exists an 
isomorphism from the graph onto itself that maps x to y. 
 
EXAMPLE 2.1. Priya and Munusamy are automorphically 
equivalent nodes in the graph of Figure 1. Munusamy and 
Gnanam are not automorphically equivalent: the subgraph 
around Munusamy is different from the subgraph around Gnanam 
and no isomorphism proving automorphically equivalence is 
possible. 
An Automorphically equivalence structure induces a 
partitioning on V into sets whose members have 
indistinguishable structural properties. It follows that an 
adversary even with comprehensive knowledge of a target 
node’s structural position cannot identify an individual 
beyond the set of entities to which it is automorphically 

equivalent. We say that these nodes are structurally 
indistinguishable and observe that nodes in the graph 
achieve anonymity by being “hidden in the crowd” of its 
automorphically class members. Some special graphs have 
large automorphically equivalence classes. For example, in 
a complete graph, or in a graph which forms a ring, all 
nodes are automorphically equivalent. But in most graphs 
we expect to find small automorphism classes, likely to be 
insufficient for protection against re-identification. Though 
automorphism classes may be small in real networks, 
automorphically equivalence is an extremely strong notion 
of structural similarity. In order to distinguish two nodes in 
different automorphically equivalence classes, it may be 
necessary to use complete information about their positions 
in the graph. For example, for a weaker adversary, who 
only knows the degree of targeted nodes in the graph, 
Munusamy and Gnanam are indistinguishable. Thus we 
must consider the distinguishability of nodes to realistic 
adversaries with limited external information. 
2.3 Targets of Protection 
Privacy preservation is about the protection of sensitive 
information. This may concern with nodes, edges, 
relationship between the nodes, and network structure. An 
adversary may have background knowledge on network 
structure. From the examples of real datasets we identify 
two main types of sensitive information that a user may 
want to keep private and which may be under attack in a 
social network.  
2.3.1 Node Info: 
The first type of target to protect is node and we can it as 
Node Info. 
For example, the emails sent by an individual in the Enron 
dataset can be highly sensitive since some of the emails 
have been written only for private recipients and should not 
be allowed to be linked to any individual. 
We assume that any identifying information such as names 
will first be removed from Node Info, so that the content of 
Node Info does not help the identification of its owner.  
2.3.2 Link Info: 
The second type, which we call Link Info, is the 
information about the relationships among the individuals, 
which may also be considered sensitive. In this case, the 
adversary may target at two different individuals in the 
network and try to find out if they are connected by some 
path.  
We aim to provide sufficient protection for both Node Info 
and Link Info. We should point out that the linkage of an 
individual to a node in the published graph itself does not 
disclose any sensitive information for the Node Info target, 
because if we separate the publishing of the Node Info from 
that of the node, then attacks of the first type will not be 
possible. 
 

III. K-AUTO RESTRUCTURE 
In order to guarantee privacy from any structural attack, we 
propose the following concept. 
Definition 3.1. k-Autorestructured Network. Given a 
network G, (a) if there exist k-1 autorestructure functions 
Fa (a=1,...,k-1) in G, and (b) for each vertex v in G, Fa1 (v) 
≠ Fa2 (v) (1≤ a1≠a2 ≤ k -1), then G is called a k-
restructured network. 

V.Gnanasekar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1375-1381

www.ijcsit.com 1377



Obviously, if G is a k-autorestructured network, for any 
vertex v in G, we cannot distinguish v from its k-1 
symmetric vertices based on any structural information. 
Thus, an adversary cannot identify v from G with a 

probability higher than
ଵ. Therefore, the problem that we 

want to solve in this paper is defined as follows:  
 
Definition 3.2. Given an original network G, find a network 
G*, where G is a sub-graph of G* and G* is a k-
autorestructured network. G* is published as G’s 
anonymized version. 
 
3.1 Node Anonymization 
We assume that the nodes have been anonymized with one 
of the techniques introduced for single table data. For 
example, the nodes could be k-anonymized using t-
closeness. This anonymization provides a clustering of the 
nodes into m equivalence classes (C1, . . . ,Cm) such that 
each node is indistinguishable in its quasi-identifying 
attributes from some minimum number of other nodes. We 
use the following notation C(vi) = Ck to specify that a node 
vi belongs to equivalence class Ck. The anonymization of 
nodes creates equivalent classes of nodes. Note, however, 
that these equivalent classes are based on node attributes 
only, and inside each equivalence class, there may be nodes 
with different identifying structural properties and edges. 
 
ALGORITHM 
1:  Input:G=(V,E1,...,Es) 
2:  Output: G’ = (V 0,E10,… ,Ek0) 
3:  V’=anonymize-nodes(V) 
4:  for t=1 to k do 
5:  Et’= Et 
6:  end for 
 
3.2 Edge Anonymization 
The first edge anonymization option is to only remove the 
sensitive edges, leaving all other observational edges intact. 
In our running example, we remove the friendship 
relationships, since they are the sensitive relationships, but 
we leave intact the information about students taking 
classes together and being members of the same research 
group. Since the relational observations remain in the 
graph, this anonymization technique should have a high 
utility. But it is likely to have low privacy preservation. 
 
3.3 Partial-edge removal  
Another anonymization option is to remove some portion 
of the relational observations. We could either remove a 
particular type of observation which contributes to the 
overall likelihood of a sensitive relationship, or remove a 
certain percentage of observations that meet some pre-
specified criteria. This partial edge removal process should 
increase the privacy preservation and reduce the utility of 
the data as compared to the previous method. Removing 
observations should reduce the number of node pairs with 
highly likely sensitive relationships but it does not remove 
them completely. For those pairs of nodes, private 
information may be disclosed.  
 

3.4. Cluster-edge anonymization 
In the above approaches, while the nodes had been 
anonymized, the number of nodes in the graph was still the 
same, and the edges were essentially between copies of the 
anonymized nodes. Another approach is to collapse the 
anonymized nodes into a single node for each cluster, and 
then consider which edges to include in the collapsed 
graph. 
Definition 3.4 k-Autorestructure clustered social network: 
An anonymized social network G* = (u,v), where u = 
{C1,C2, … , Cv}, and Cj = [(|cj|, |Ecj|)], j = 1, …, v is k-
anonymous iff |cj| ≥ k for all j = 1, …, v.  
The algorithm used in the anonymization process, called 
the SaNGreeA (Social Network Greedy Anonymization) 
algorithm, performs a greedy clustering processing of an 
initial social network in order to generate a k-anonymous 
clustered social network. In this algorithm the nodes that 
are more similar in terms of their neighborhood structure 
are clustered together using a greedy approach. To do so, a 
measure that quantifies the extent to which the 
neighborhoods of two nodes are similar with each other is 
used.  

 
IV. GRAPH-BASED PRIVACY ATTACKS 

According to Li et. al., there are two types of privacy 
attacks in data: identity disclosure and attribute disclosure. 
In graph data, there is a third type of attack: link re-
identification. 
Identity disclosure occurs when the adversary is able to 
determine the mapping from an anonymized record to a 
specific real-world entity. Attribute disclosure occurs when 
the adversary is able to infer the attributes of a real world 
entity more accurately than it would be possible before the 
data release. Identity disclosure often leads to attribute 
disclosure. Both identity disclosure and attribute disclosure 
have been studied widely in the privacy community.  
Rather than focus on these two kinds of attack, the focus of 
our paper is on link re-identification. Link re-identification 
is the problem of inferring that two entities participate in a 
particular type of sensitive relationship or communication. 
Sensitive conclusions are more general statements that an 
adversary can make about the data, and can involve node, 
edge and structural information. These conclusions can be 
the results of aggregate queries. For example, in a database 
describing medical data informal about company 
employees, finding that almost all people who work for a 
particular company have a drinking problem may be 
undesirable. Depending on the representation of the data, 
this can be revealed by using both the node attributes and 
the co-worker relationship. 
 

V. LINK RE-IDENTIFICATION ATTACKS 
The extent of a privacy breach is often determined by data 
domain knowledge of the adversary. The domain 
knowledge can influence accurate inference in subtle ways. 
The goal of the adversary is to determine whether a 
sensitive relationship exists. There are different types of 
information that can be used to infer a sensitive 
relationship: node attributes, edge existence, and structural 
properties. Based on the domain knowledge of the 
adversary, she can construct rules for finding likely 
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sensitive relationships. In this work, we assume that the 
adversary has an accurate probabilistic model for link 
prediction, which we will describe below. In our running 
example, the sensitive friendship link may be re-identified 
based on node attributes, edge existence or structural 
properties. For example, consider two student nodes 
containing a boolean attribute “Talkative.” Two nodes that 
both have it set to “true” may be more likely to be friends 
than two nodes that both have it set to “false.” This 
inference is based on node attributes. An example of re-
identification based on edge existence is two students in the 
same research group who are more likely to be friends 
compared to if they are in different research groups. A re-
identification that is based on a structural property such as 
node degree would say that two students are more likely to 
be friends if they are likely to correspond to high degree 
nodes in the graph. A more complex observation is one 
which uses the result of an inferred relationship. For 
example, if each of two students is highly likely to be a 
friend with a third person based on other observations, and 
then the two students are more likely to be friends too. 
 

VI. LINK RE-IDENTIFICATION IN ANONYMIZED DATA 
In the first two types of link anonymization, the noisy-or 
model can be used directly to compute the probability of a 
sensitive edge. In the other two cases, one has to consider 
the probability that an observed edge exists between two 
nodes, and apply the noisy-or. 
6.1 Link re-identification in cluster-edge anonymization 
In the case of keeping edges between equivalence classes, 
the probability of an observation existing between two 
nodes is not given and it needs to be estimated. The noisy-
or function will need to take into consideration the 
probability associated with each observation in order to 
compute the likelihood of a sensitive relationship. When 
the number of relationships of each type between two 
equivalence classes is given, the distribution is not uniform, 
and the probability of an observation 
P(o)=P(observation(vi, vj)) existing between two students 
can be computed directly from the counts of relationships 
between their equivalence classes. P(classmates(vi,vj,c)) 
expresses the probability that there exists a class edge 
between any two students vi and vj from two equivalence 
classes C(vi) and C(vj), i.e., the students take a course c 
together. It is equal to the number of possible student pairs 
from the two equivalence classes who take a course 
together classmates(C(vi),C(vj)) as a fraction of the number 
of possible relationships in the graph     |V|2. 
6.2 Link re-identification in cluster-edge anonymization 
with constraints 
In the constrained cluster-edge anonymization approach, 
the number of relationships between equivalence classes is 
not given. Therefore, the probability of an observation 
existing between any two edges has to be taken into 
account in the noisy-or model. To estimate this probability, 
an adversary can assume a uniform distribution, meaning 
that the probability of an observation existing between any 
two edges is the same for all edges in the graph. This 
estimate is worse than the cluster-edge anonymization 
method. Using the constraints on the data, it is possible to 
get estimates of this probability. For example, if it is known 

that there are 50 pairs of students who take courses 
together, and there are 100 possible pairs, then the 
probability of any two students taking any class c together 
is P(classmates(vi, vj , c))=0.5. If the adversary knows the 
number of offered courses c, the number of courses per 
person n, the number of students s = |V|, and assumes that 
all courses have the same number of people p = 

௦∗ 		then 

the number of possible pairs who take courses together can 
be calculated as   n*(p − 1). This number can be used to 
compute in a manner similar to the cluster-edge 
anonymization method P(classmates(vi,vj, c))=n*(p−1) 
|V|2.  
One can also use an expected value of any two-node 
relationship to be sensitive by looking at the likelihood 
distribution of all relationships. However, we found that 
this does not measure privacy well because an adversary is 
more interested in the highly likely relationships.  
An observation probability shows the percentage of edges 
between two nodes from two different equivalence classes 
that contain the observation. For example, if the two 
equivalence classes have exactly 10 nodes each, and the 
observation exists for 30 of the two-node edges, then the 
edge probability is P(observation(vi, vj))=0.3 where 
observation(vi, vj) is either classmates(vi,vj,c), or group 
mates(vi,vj,g) for any c and g. This increases the utility of 
the data as compared to the case when no probabilities are 
included, but it can also decrease the privacy preservation. 
An exception is the case when observations between 
equivalence classes have exactly the same distribution as 
the overall uniform distribution. 
 

VII. EXPERIMENTS 
We study the above illustrated structural properties on the 
original and de-anonymized versions of several real and 
synthetic datasets. These datasets are described next. 
The Enron dataset is a network of e-mail exchanges 
available online. A node in this network represents an email 
address. An edge exists between two nodes if at least one e-
mail was sent from one node to the other node from that 
edge. This network has 36,692 nodes and 183,831 edges. 
The Scale Free dataset is an undirected network generated 
based on the scale free model. This approach models real 
world social networks that follow a power-law degree 
distribution. We generated this dataset using following 
initial parameters: the number of nodes = 10,000, average 
degree of nodes = 33.The generated graph has a significant 
number of multiple edges (more than 60,000) which are 
eliminated in a post-processing step. This final scale free 
network that we used in our experiments has 10,000 nodes 
and 100,657 edges. 
The last dataset, labeled RMAT, is based on the R-MAT 
model. We implemented an R-MAT graph generator that 
takes the number of nodes (n), the average node degree 
(avg_deg), and four probabilities as input parameters. The 
location of each edge is determined based on a recursive 
algorithm that divides the adjacency matrix into 4 equal-
sized partitions and the edge location is probabilistically 
selected in one of the 4 partitions, based on the four 
probability parameters (we used the values 0.45, 0.15, 0.15, 
and 0.25 for RMAT dataset generation). Once a partition is 
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decided, it is again divided into four sub-partitions until 
there will be only one cell from the adjacency matrix left in 
the partition. If this cell has value 1, this procedure is 
repeated from the beginning. This approach also models 
real-world graphs that follow power-law degree 
distributions.  We start from the initial social networks 
(Enron, Scale Free, and RMAT) previously described. 
First, the initial social networks are anonymized into k-
anonymous clustered social networks as described in 
Section 2. For each dataset we used the following values 
for k: 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, and 50. 
 
Second, from each k-anonymous clustered social network 
ten possible de-anonymized social networks are generated. 
In this process we generate edges randomly within each 
cluster until the number of generated edges is equal to the 
number of edges recorded in the super-node description. 
This process continues with the generation of edges 
between super nodes. These edges are also generated 
randomly until the number of generated edges is equal with 
the number of edges that describes the corresponding 
super-edge between the two super-nodes. This process 
guarantees that each generated “de-anonymized” social 
network will have the same number of nodes and edges as 
the original network. We decided to generate ten networks 
for each anonymized social network to avoid any possible 
outliers. In Steps 3 and 4, we compute the structural 
properties values for the original and de-anonymized social 
networks. Since we generated ten social networks for each 
anonymized network, we report the average for each 
structural property. Last, we compare the structural 
properties values measured for the original social network 
with the ones obtained from the anonymized networks. The 
results are shown in Figures 2. The vertical axis shows the 
probability that an adversary can perform structural attack 
and find the network structure.. The reason we chose to 
report the values or the ratio is due to the fact that the 
values can be very different between the five considered 
datasets and the representation of all the values is difficult 
to include in one chart. Horizontal axis shows nodes from 
various data source. On the other hand, for some structural 
properties (such as diameter) reporting the values provides 
more information. The Figure 2 shows how the probability 
gets down as the network is refine at various steps.  
 
7.1 Dataset 
This dataset consists of 'circles' (or 'friends lists') from 
Facebook. Facebook data was collected from survey 
participants using this Facebook app. The dataset includes 
node features (profiles), circles, and ego networks.  
Facebook data has been anonymized by replacing the 
Facebook-internal ids for each user with a new value. Also, 
while feature vectors from this dataset have been provided, 
the interpretation of those features has been obscured. For 
instance, where the original dataset may have contained a 
feature "political=Democratic Party", the new data would 
simply contain "political=anonymized feature 1". Thus, 
using the anonymized data it is possible to determine 
whether two users have the same political affiliations, but 
not what their individual political affiliations represent.  
 

Dataset statistics 
Nodes 4039 
Edges 88234 
Nodes in largest WCC 4039 (1.000) 
Edges in largest WCC 88234 (1.000) 
Nodes in largest SCC 4039 (1.000) 
Edges in largest SCC 88234 (1.000) 
Average clustering coefficient 0.6055 
Number of triangles 1612010 
Fraction of closed triangles 0.2647 
Diameter (longest shortest path) 8 
90-percentile effective diameter 4.7 

 
7.2 Data Generator 
The data generator creates data according to the data model 
described in Section 3. The input to the data generator 
includes: the number of nodes, maximum number of nodes 
which can participate in a relationship (e.g., the maximum 
number of students taking the same class), the maximum 
number of relationships that each student can have with any 
other student (e.g., maximum number of classes that a 
student can take). For all observation types, the probability 
of two nodes exhibiting a sensitive relationship given the 
observation type is given and the leak probability, the 
probability of two nodes exhibiting a sensitive relationship 
due to unobserved causes.  
For the concrete example, the data generator starts by 
creating a set of students, a set of classes, and a set of 
research groups. There are constraints on how many classes 
each student takes, and on how many research groups each 
student belongs. There are also constraints on the 
maximum number of students per class and on the 
maximum number of students per group. For each student, 
the generator picks random classes to enroll into up to the 
maximum number of classes per student possible. 
Similarly, each student is assigned to a random research 
group.  
The nodes in the data graph represent students. There is a 
class mates edge connecting two students for each class 
they take together, and there is groupmates edge if they 
belong to the same research group. These pieces of 
information represent observations indicating that two 
students may be friends, i.e., that they may exhibit a 
sensitive relationship. The ground truth is generated by 
computing the probability of a friendship between each two 
students using the noisy-or model, and assigning the 
friendship a true value with a probability equal to that 
likelihood.  
The parameters given to the data generator can be varied. 
We would like to explore graphs which vary in their 
density; therefore we allow the number of lasses and 
research groups to vary while fixing the number of 
nodes/students to 100. The constraints on the data are that 
each student takes two classes, and belongs to one research 
group. Also, a class can have no more than 25 people, and a 
group can have no more than 15. We picked probabilities 
which make sense in the domain. The prior probability of 
two students knowing each other is P(friends(vi, vj))=0.2. It 
is relatively high because the students are from the same 
department. The probability that two students know each 
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other if they are in the same class c is P(friends(vi,vj)-
classmates(vi, vj,c))=0.4. The probability that two students 
know each other if they are in the same research group is 
P(friends(vi,vj)-groupmates(vi,vj,c))=0.6. 
7.3 Evaluating privacy preservation in anonymized data 
We begin by studying the privacy preservation in the data 
that results from each of the anonymization techniques. In 
particular, we study the number of correctly identified 
sensitive relationships for the following anonymization 
functions:  
i. When the anonymization function leaves the edges 

between nodes intact (4.2),  
ii. When it removes 50% of the observations chosen at 

random (4.2),  
iii. When it leaves edges between node equivalence 

classes in the cluster-edge anonymization (4.2), and 
iv. When it leaves edges between node equivalence 

classes with a constrained number of observations 
(4.2). For the last two, each node is assigned randomly 
to an equivalence class. We vary k, the number of 
nodes in each equivalence class, and show the results 
for k = 2 and k = 6 because they exhibit the tendencies 
of varying k well. 

 
The data was generated with the default parameters, 
varying the number of classes and the number of research 
groups between 10 and 30. A graph, in which there are 10 
research groups and 10 classes, is very dense, and a graph 
at the other extreme with 30 research groups and 30 classes 
is very sparse. To account for the randomness in the 
generated graph, we ran the experiments on 100 generated 
graphs, and present the average performance. Note that 
when using the default data parameters, the maximum 
possible likelihood for their friendship is 0.89.  
We measure the probability of attack on network structure 
again nodes from various nodes. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 2: Nodes Vs Probability of Structural Attack 
 

7.4 Results 
Figure 2 shows a comparison between the numbers of 
sensitive relationships inferred after each of our proposed 
anonymization technique has been applied. It shows that at 
higher thresholds (0.6 and 0.8) keeping all the edges 
between node equivalence classes preserves privacy much 
better than deleting 50% of the two-node edges, while 
having higher utility. As expected, for lower k, the privacy 
preservation is lower: the number of revealed relationships 
is higher in the data anonymized with the cluster-edge 
method. In the data anonymized with the cluster-edge 
method with constraints, varying k yielded to the same 
results, which is why the graphs of k = 2 overlap with the 
graphs, in which k = 6. 
 

VIII. CONCLUSION 
We have focused on what we believe to be one of the most 
basic and distinctive challenges for protecting privacy in 
network data sets understanding the extent to which graph 
structure acts as an identifier. We have formalized classes 
of adversary knowledge and evaluated their impact on real 
networks as well as models of random graphs. We 
proposed anonymizing a graph by generalizing it: 
partitioning the nodes and summarizing the graph at the 
partition level. We show that a wide range of important 
graph analyses can be performed accurately on a 
generalized graph while protecting against re-identification 
risk. 
 

REFERENCES 
[1] V. Rastogi, S. Hong, and D. Suciu. The boundary between privacy 

and utility in data publishing. In VLDB, 2007. 
[2] S. Russell and P. Norvig. AI: A Modern Approach. 2003. 
[3] L. Singh and J. Zhan. Measuring topological anonymity in social 

networks. In Intl. Conf. on Granular Computing, 2007. 
[4] L. Sweeney. k-anonymity: a model for protecting privacy. Journ. of 

Uncertainty, Fuzziness, and KB Systems, 2002. 
[5] D.-W. Wang, C.-J. Liau, and T.-S. Hsu. Privacy protection in social 

network data disclosure based on granular computing. In 
International Conference on Fuzzy Systems, 2006. 

[6] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ 
networks. Nature, 393:440–442, 1998. 

[7] D. B. West. Introduction to Graph Theory. August 2000.  
[8] X. Ying and X. Wu. Randomizing social networks: a spectrum 

preserving approach. In SIAM Conf. on Data Mining, 2007. 
[9] L. Getoor and C. P. Diehl. Link mining: a survey. SIGKDD Explor. 

Newsl.,7(2):3–12, December 2005. 
[10] M. Hay, G. Miklau, D. Jensen, P. Weis, and S. Srivastava. 

Anonymizing social networks, March 2007. 
[11] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy 

beyond k-anonymity and l-diversity. In IEEE 23rd International 
Conference on Data Engineering, pages 106–115, April 2007. 

[12]  A. Machanavajjhala, J. Gehrke, D. Kifer, and 
M.Venkitasubramaniam.l-diversity: Privacy beyond k-anonymity. In 
22nd IEEE International Conference on Data Engineering, 2006. 

[13] G. Miklau and D. Suciu. A formal analysis of information disclosure 
in data exchange. In ACM Conference on Management of Data 
(SIGMOD), pages 575–586, 2004. 

[14] M. E. Nergiz, M. Atzori, and C. Clifton. Hiding the presence of 
individuals from shared databases. In 26th ACM SIGMOD 
International Conference on Management of Data, June 2007. 

[15] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise 
to sensitivity in private data analysis. In TCC, 2006. 

 
 
 

V.Gnanasekar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1375-1381

www.ijcsit.com 1381




